I - Gel Versus Cuffed Tracheal Tube in Elective Laparoscopic Cholecystectomy – A Clinical Comparative Study

Siddharam Jamagond¹, Anuradha H², Ramesh.K³

¹Senior resident, Department of Anesthesia, Koppal Institute of Medical Sciences, Koppal, Karnataka ²Assistant Professor, Department of Anesthesia, Koppal Institute of Medical Sciences, Koppal, Karnataka ³Associate Professor, Department of Community Medicine, VIMS, Ballari, Karnataka

Corresponding Author:

E-mail: ramspsm@gmail.com

ABSTRACT:

Background: This study aims to test and compare Endo tracheal tube and i-gel in terms of their: Efficacy: Difference in the leak fraction between two airway devices before and after pneumoperitoneum with different tidal volumes and comparison of oro pharyngeal leak pressure. Ease of insertion: Number of attempts required for optimal positioning.

Methods: Sixty patients, ASA I–II, were randomly selected to the study. Standard anaesthetic technique was used for all patients. The i-gel was then inserted. The lungs were ventilated at three different tidal volumes (6, 8 and 10 ml kg1) using volume controlled ventilation (VCV). The leakvolume was calculated as the difference between the inspired and expired tidal volumes. The leakfraction was also calculated as the leak volume divided by the inspired tidal volume. These observations were recorded with every tidal volume before and after pneumoperitoneum with the i-gel and the conventional tracheal tube

Results: We found oro pharyngeal leak pressure for i gel as 26cm of H2O and there was no leak in endotracheal tube group even at 40 cm of H2O peak air way pressure. Before and after pneumoperitoneum there was no statistically significant difference in leak fraction or leak volume between i-gel and tracheal tube at tidal volume $6ml \ kg^{-1}$. At 8 and 10 ml kg^{-1} there was statistically significant difference between i-gel and tracheal tube both before and after pneumoperitoneum

Conclusion: In our study we found that i-gel airway can be used safely and effectively during volume controlled ventilation with low and moderate tidal volumes

Key words: *I-gel*; *Leak fraction*; *Pneumoperitoneum*; *Cholecystectomy*

INTRODUCTION

Safe and effective airway management is the foundation of quality anesthetic practice. Supraglottic airway devices have revolutionized airway management since the invention of the LMA Classic (LMA North America Inc., California, USA) by Dr Archie Brain in 1988. They fill a niche between the face mask and the endotracheal tube in terms of both anatomical position and degree of invasiveness¹. The ease of insertion, safety and the global increase in the number of day care surgeries have led to their increased use in routine anesthetic practice.

Since the introduction of the LMA Classic, several laryngeal masks have been introduced which differ in shape, stiffness, cuff properties and constituent material². The Ambu Aura 40 (Ambu A/S, Copenhagen, Denmark) laryngeal mask and the I-gel (Intersurgical Ltd, Wokingham, U.K.) are two such devices. Apart from being used to maintain the airway routinely during an anaesthetic, laryngeal masks have

now come to play an important role in the management of difficult airways and in emergent situations such as cardio-pulmonary resuscitation ¹.

The i-gel (Intersurgical Ltd., Wokingham, UK) is a new supraglottic airway device (SAD) made of thermoplastic elastomer which is soft, gel-like and transparent.³Studies on Cadaver showed that i-gels effectively conformed to the per laryngeal anatomy and consistently achieved proper positioning supraglottic ventilation⁴. Manikins studies and patients have shown that the insertion of the i-gel was significantly easier when compared with insertion of other SADs^{5,6}. Few studies had been done to evaluate the use of i-gel during controlled ventilation but they did not evaluate its use during procedures with airway pressure more than 25 cm H2O⁷.

Our study was designed to evaluate the i-gel sealing pressure and as effective airway as cuffed tracheal tube during volume controlled ventilation inelective laparoscopic cholecystectomy. This study aims to test and compare cuffed endotracheal tube and i-gel in terms of their:

Efficacy: Difference in the leak fraction between two airway devices before and after pneumoperitoneum with different tidal volumes and comparison of oropharyngeal leak pressure. Ease of insertion: Number of attempts required for optimal positioning.

METHODOLOGY

The study was conducted in Malabar institute of Medical Sciences, a tertiary care centre during the period of June 2012 to may 2013. This is an institution-based randomised case-control study. The approval of institutional ethics committee was obtained prior to the commencement of the study. 60 patients of ASA 1 and 2, with BMI <35kg/m2, between 18 and 60 years posted for elective laparoscopic cholecystectomy were enrolled into the study. The sample size was determined by considering a difference in the leak fraction more than 20% for the i-gel when compared to tracheal tube to be significant. They were randomized into two groups of equal number using the chit-in-a-box method for the use of either i-gel or endo tracheal tube for the maintenance of airway during the anaesthesia.

After induction of anaesthesia by a suitable intravenous induction agent and after achieving adequate anaesthetic depth, the randomly chosen, appropriately sized airway device was inserted and connected to the breathing circuit. The following parameters were then studied:

- Number of attempts for correct positioning of the device.
- 2. Oropharyngeal leak pressure
- 3. Leak volume and leak fraction

The data was analysed using the Statistical Package for Social Sciences software for Windows. The paired t test, t test, fisher exact test, and Pearson's Chi square tests were used for comparing the data.

RESULTS

Table1: Comparison of age based on group

A 90	I-	I-gel		heal tube	
Age	Number	Percent	Number	Percent	
20 - 29	9	30.0	7	23.3	
30 - 39	6	20.0	6	20.0	
40 - 49	5	16.7	4	13.3	
50 - 60	10	33.3	13	43.3	
Mean ± SD	40.2	2 ± 13	42.9 ± 12.9		

t = 0.80, p = 0.427 (significant if p < 0.05)

The mean age of I-gel group was 40.2 years and whereas Endotracheal tube group was 42.9 years. This difference was not statistically significant.

Table2: Distribution according to American society of Anesthesiologists physical status classification

American Society of Anesthesiologists physical status	I ge	el	Endotracheal tube		
classification	Number	Percent	Number	Percent	
Grade I	20	66.7	16	53.3	
Grade II	10	33.3	14	46.7	

 $\chi^2 = 1.11$, p = 0.292 (significant if p< 0.05)

The airway characteristics of the patients studied i.e. mouth opening (Table 3), thyromental distance (Table 4) and the Mallampati (Table 5) score were also noted and statistically analysed, the results were not statistically significant.

Table 3: Distribution according to mouth opening

Mouth Opening	I	gel	Endotracheal tube		
Width Opening	Number	Percent	Number	Percent	
5 cm designated	4	13.3	6	20.0	
> 5 cm designated	26	86.7	24	80.0	

 $\chi^2 = 0.48$, p = 0.488 (significant if p< 0.05)

Table 4: Distribution according to thyromental distance

Thynomental Distance	I	gel	Endotracheal tube			
Thyromental Distance	Number	Percent	Number	Percent		
6 cm designated	4	13.3	3	10.0		
> 6 cm designated	26	86.7	27	90.0		

p = 0.500 (Fisher Exact test) (significant if p< 0.05)

Table5: Comparison ofmallampati grade

Mallampati grade	I gel		Endotracheal tube		
Manampan grade	Number	Percent	Number	Percent	
1	3	10.0	2	6.7	
2	27	90.0	28	93.3	

p = 0.500 (Fisher Exact test) (significant if p< 0.05)

The number of attempts at insertion needed to get a proper positioning of each device was noted and analysed. The i- gel could be positioned successfully with a single attempt in 86.2% of the patients in whom the device was used(26 out of the 30 patients studied), whereas successful placement at first attempt could be achieved in 93.3% of the subjects in endotracheal group(28 out of 30 patients). The i- gel and endotracheal tube could be positioned successfully in second attempt in remaining cases. I-gel had to be manipulated in 3 cases. There were no instances of failure to secure an airway with the chosen device. This result does not show a statistical significance (P = 0.335)

Table6: Comparison of no. of attempts required to insert the device based on group

No. of attempts required to	attempts required to		Endotracheal tube		
insert the device	Number	Percent	Number	Percent	
1	26	86.7	28	93.3	
2	4	13.3	2	6.7	

p = 0.335 (Fisher Exact test) (significant if p< 0.05)

Table7: Comparison of manipulation of airway to maintain adequate ventilation based on group

Manipulation of air way to	I -	gel	Endotracheal tube		
maintain adequate ventilation	Number	Percent	Number	Percent	
Yes	3	10.0	0	0.0	
No	27	90.0	30	100.0	

p = 0.119 (Fisher Exact test) (significant if p < 0.05)

The oropharyngeal leak pressure (OPLP) measured while using each device was measured and the average was calculated. It is as follows median value of OPLP in i-gel group is 26 cm H20

Table8: Distribution according to oropharyngeal leak pressure(cm H2O)

Oropharyngeal Leak	Ι-	gel	Endotracheal tube			
Pressure	Number	Percent	Number	Percent		
20 - 29	21	70.0	0	0.0		
30 - 39	9	30.0	0	0.0		
> 40	0	0.0	30	100.0		

Before and after pneumoperitoneum there was no statistically significant difference in leak fraction between i-gel and tracheal tube at tidal volume 6ml kg^{-1} (P=0.620 and 0.956). The mean difference in leak fraction was significant between i- gel and endotracheal group before and after pneumoperitoneum at 8 ml kg⁻¹ tidal volume (P=0.000). At 10 ml kg⁻¹ there was statistically significant difference between i-gel and tracheal tube both before and after pneumoperitoneum (P=0.000).

Before and after pneumoperitoneum leak volume at 6 ml kg $^{-1}$ showed no significant difference (P=0 212and0.972). But we found statistically significant difference before and after pneumoperitoneum at 8ml kg $^{-1}$ and 10 ml kg $^{-1}$.

Table 9. Com	narison hefore	pneumoperitoneum	hased on	graiin
Table 7. Com	parisum detute	pheumopermoneum	Dascu UI	group

•	•	Mean	SD	N	t	р
Leak Volume Before	I- gel	14.8	1.8	30	1.26	0.212
Pneumoperitoneum - 6	Endo tracheal tube	15.9	4.6	30	1.20	0.212
Leak Volume Before	I- gel	27.3	5.2	30	7.44**	0.000
Pneumoperitoneum - 8	Endo tracheal tube	17.8	4.7	30	7.44	0.000
Leak Volume Before	I- gel	43.6	7.1	30	15.78**	0.000
Pneumoperitoneum - 10	Endo tracheal tube	18.9	4.8	30	13.76	0.000
Leak Fraction Before	I- gel	0.0	0.0	30	0.50	0.620
Pneumoperitoneum - 6	Endo tracheal tube	0.0	0.0	30	0.50	0.020
Leak Fraction Before	I -gel	0.1	0.0	30	7.35**	0.000
Pneumoperitoneum - 8	Endo tracheal tube	0.0	0.0	30	7.55	0.000
Leak Fraction Before	I- gel	0.1	0.0	30	13.55**	0.000
Pneumoperitoneum - 10	Endo tracheal tube	0.0	0.0	30	13.33	0.000

^{**:} significant at 0.01 level

Table 10: Comparison after pneumoperitoneum based on group

		Mean	SD	N	t	p
Leak Volume After	I –gel	16.2	2.5	30	0.04	0.972
Pneumoperitoneum - 6	Endo tracheal tube	16.2	4.6	30	0.04	0.972
Leak Volume After	I –gel	29.7	3.9	30	13.07**	0.000
Pneumoperitoneum - 8	Endo tracheal tube	17.4	3.4	30	13.07	0.000
Leak Volume After	I –gel	54.4	10.6	30	17.8**	0.000
Pneumoperitoneum - 10	Endo tracheal tube	18.5	3.0	30	17.8	0.000
Leak Fraction After	I –gel	0.0	0.0	30	0.06	0.956
Pneumoperitoneum - 6	Endo tracheal tube	0.0	0.0	30	0.00	0.930
Leak Fraction After	I –gel	0.1	0.0	30	8.81**	0.000
Pneumoperitoneum - 8	Endo tracheal tube	0.0	0.0	30	0.01	0.000
Leak Fraction After	I –gel	0.1	0.0	30	13.88**	0.000
Pneumoperitoneum - 10	Endo tracheal tube	0.0	0.0	30	13.00***	0.000

^{**:} significant at 0.01 level

DISCUSSION

Laryngeal masks have played an important role in airway management since the introduction of the LMA Classic in 1988. Since then, several laryngeal masks varying in their shape, stiffness, cuff properties and clinical applications have come into existence. In addition to their use during routine anesthetics, they have also been recommended for use in difficult airway scenarios^{8,9} and in cardio-pulmonary resuscitation.

Supra glottic airway devices have several advantages including lower incidence of sore throat 10, less hemodynamic upset during induction and maintenance of anaesthesia 11,12 and better oxygenation during emergence 13. I-gel is a relatively new disposable supraglottic airway device that has no inflatable cuff. It has an integral bite block, wide bore lumen, and an additional distal lumen that allows for the passage of a gastric tube. These features may give the i-gel an advantage over the LMA and even the Pro-Seal LMA.

There was too much debate among anesthesiologists about using these devices during procedures requiring positive pressure ventilation.

During high tidal volume ventilation and laparoscopic procedures peak airway pressure rises and exceeds airway sealing (leak) pressure leading to increase in leak volume and fraction. These findings explain difficulties in maintaining optimum ventilation

We analyzed 60 patients undergoing elective laparoscopic cholecystectomy. They were randomized into two groups of equal numbers using the chit-in-abox method for the use of either i-gel or endotracheal tube for the maintenance of airway during the anesthesia.

Both groups were comparable in terms of age, sex and ASA status. Height, weight and BMI were also statistically comparable. The airway characteristics of all patients studied in terms of mouth opening, thyromental distance and the mallampati scores were also comparable

Ease of Insertion

After induction of anesthesia, the randomly chosen device (i gel or endotracheal tube) of appropriate size was inserted and the number of

attempts needed for proper positioning of the device was noted. In our study we did not find any significant difference between two and number of attempts require to secure i -gel in our study is comparable to other international studies.¹⁴

Oropharyngeal Leak Pressure (OPLP)

The oropharyngeal leak pressure is the airway pressure at which gases begins to leak around the cuff of the laryngeal mask airway device

Uppalet al.⁷ found leak pressure for i-gel 28 (20–35) cm H2O by both auscultation and manometer stabilization methods. In our study we concluded that airway leak pressure for i-gel was 26 cm H2O. Ishwar et al. ¹⁴ concluded that airway leak pressure for i-gel was 25.27 cm H2O using same methods.

Lu et al. 15 compared Pro-Seal laryngeal mask airway (PLMA) with Classic laryngeal mask airway (LMA) for positive pressure ventilation during laparoscopic cholecystectomy. They concluded that PLMA is more effective ventilator device for laparoscopic cholecystectomy than classic LMA. This was attributed to higher leak pressure due to large cuff size (leak pressure was 29± 6 cm H2O). We thought that i-gel could be used during such procedures but unfortunately during our study we found leak pressure for i-gel was 26 cm H2O which is less than peak pressure during pneumoperitoneum especially at moderate and high tidal volumes 16. In our study we found oropharyngeal leak pressure more than 40 cm of H2O for endotracheal tube. We did not correlate anatomical position of i-gel with clinically evident leaks by using fibreoptic bronchoscope ¹⁷

Leak fraction and leak volume

Before and after pneumoperitoneum there was no statistically significant difference in leak fraction or leak volume between i-gel and tracheal tube at tidal volume $6\,\text{ml kg}^{-1}$. At 8 and $10\,\text{ml kg}^{-1}$ there was statistically significant difference between i-gel and tracheal tube both before and after pneumoperitoneum.

CONCLUSIONS

Our study supports the use of i-gel during VCV in elective laparoscopic cholecystectomy using low to moderate tidal volumes provided that peak airway pressure not more than device leak pressure. Although leak volume was significant, ventilation and oxygenation were optimal in most cases. Tracheal tube should be inserted if failed ventilation and oxygenation.

REFERENCES:

- T. M. Cook, "The classic laryngeal mask airway: a tried and tested airway. What now?" British Journal of Anaesthesia, 2006; 96: 149–152,
- Ng SY, Teoh WH, Lim Y, Cheong VG. Comparison of the AMBU Laryngeal Mask and the LMA Classic in anaesthetised, spontaneously breathing patients. Anaesth Intensive Care. 2007 Feb;35:57-59

- Devitt JH, Wenstone R, Noel AG, O'Donnell MP. The laryngeal mask airway and positive-pressure ventilation. Anesthesiology 1994;80:550–5.
- Levitan RM, Kinkle WC. Initial anatomic investigations of the i-gel_ airway: a novel supraglottic airway without inflatable cuff. Anesthesia 2005:60:1022–6.
- 8. Jackson KM, Cook TM. Evaluation of four airway training manikins as patient simulators for the insertion of eight types of supraglottic airway devices. Anaesthesia 2007;62:388–93.
- 9. Wharton NM, Gibbison B, Gabbott DA, Haslam GM, Muchatuta N, Cook TM. i-gel insertion by novices in manikins and patients. Anaesthesia 2008;63:991–5.
- Uppal V, Fletcher G, Kinsella J. Comparison of the i-gel with the cuffed tracheal tube during pressure-controlled ventilation. J Anaesth 2009;102(2):264–8, ISSN: 0007-0912.
- American Society of Anesthesiologists Task Force on Management of the Difficult Airway- Practice Guidelines for Management of the Difficult Airway. Anesthesiology 2003; 98:1269–77
- Henderson JJ, Popat MT, Latto IP et al; Difficult Airway Society Guidelines for management of the unanticipated difficult intubation. Anaesthesia 2004:59; 675-694
- 13. Higgins PP, Chung F, Mezei G. Postoperative sore throat after ambulatory surgery. Br J Anaesth 2002;88:582–4.
- Dyer RA, Llewellyn RL, James MF. Total i.v.anaesthesia with propofol and the laryngeal mask for orthopaedic surgery. Br J Anaesth 1995;74:123–8.
- Cork RC, Depa RM, Standen JR. Prospective comparison of use of the laryngeal mask and endotracheal tube for ambulatory surgery. Anesthesia Analgesia 1994;79:719– 27
- Webster AC, Morley-Forster PK, Dain S, et al. Anaesthesia for adenotonsillectomy: a comparison between tracheal intubation and the armoured laryngeal mask airway. Can J Anaesth1993;40:1171–7.
- Ishwar S, Monika G, Mansi T. Comparison of clinical performance of i-gel_ with LMA-ProSeal_ in elective surgeries. Indian J Anaesth 2009;53(3):302-5.
- Lu PP, Brimacombe J, Yang C, Shyr M. ProSeal versus the Classic laryngeal mask airway for positive pressure ventilation during laparoscopic cholecystectomy. Br J Anaesth 2002;88(6): 824–7
- 19. Brimacombe J, Keller C, Fullekrug B, et al. A multicenter study comparing the ProSeal and Classic laryngeal mask airway in anesthetized, nonparalyzed patients. Anesthesiology 2002;96: 289–95.
- Van Zundert A, Brimacombe J, Kamphuis R, Haanschoten M. The anatomical position of three extraglottic airway devices in patients with clear airways. Anaesthesia 2006;61:891–5.