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Abstract 
The prevention of ventilator-induced lung injury and diaphragmatic dysfunction is now a key aspect in the management of 

mechanical ventilation, since these complications may lead to higher mortality and prolonged length of stay in intensive care 

units. Different physiological measurements, such as esophageal pressure, electrical activity of the diaphragm, and volumetric 

capnography, may be useful objective tools to help guide ventilator assistance.  
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Introduction 
Respiratory failure is the leading cause of 

admission to pediatric intensive care units (PICUs).(1-3) 

Mechanical ventilation (MV) is a lifesaving therapy 

which improves gas exchange and decreases the work 

of breathing. MV consists of a pressurized volume of 

gas delivered by either an invasive (tracheal tube or 

tracheostomy) or a non-invasive interface. MV is 

particularly challenging in children because of the 

heterogeneity of this population in terms of age, weight, 

and pathophysiology. Mechanical ventilation is a 

cornerstone in the management of patients with acute 

respiratory distress syndrome (ARDS). We now know 

that mechanical ventilation per se can aggravate lung 

injury, a process referred to as ventilator-induced lung 

injury (VILI), through several mechanisms including 

volutrauma, barotrauma and biotrauma.(1-4) Dynamic 

lung distension and repeated opening and closing of 

recruitable lung units are considered the two main 

mechanisms contributing to lung injury (132 full pdf). 

In this brief review, we aim to discuss the current 

clinical challenges of pediatric ventilation. We will also 

focus this discussion on recent advances regarding- 

1. Optimization and individualization of patient–

ventilator interactions during MV to prevent 

ventilator induced lung injury,  

2. Application of high-frequency oscillatory 

ventilation (HFOV), and  

3. The role of non-invasive ventilation (NIV) 

 

Advances in the management of mechanical 

ventilation to limit ventilator-induced lung 

injury (VILI) 
Dynamic lung distension and repeated opening and 

closing of recruitable lung units are considered the two 

main mechanisms contributing to lung injury. These 

days there is use of a global lung-protective ventilatory 

strategy, referring to low tidal volume and high levels 

of positive end-expiratory pressure (PEEP), in order to 

prevent ventilator-induced lung injury (VILI) which 

improved survival in patients with acute respiratory 

distress syndrome (ARDS).(4-8) The only way to assess 

the respiratory mechanics and the effects of MV on the 

lung itself are the ventilatory pressure, flow, and 

volume measured by the ventilator. But these recording 

variables reflect the respiratory system as a whole and 

do not take into account important pathophysiological 

features (e.g. chest wall compliance, intrinsic 

inspiratory/expiratory respiratory effort, heterogeneity 

of lung disease, etc.). 

Current challenge is to optimize and individualize 

MV by monitoring at the bedside for avoiding 

barotrauma, volutrauma, atelectrauma, and biotrauma.(9) 

To do so, transpulmonary pressure and capnography 

monitoring are helpful. The transpulmonary pressure is 

defined by the difference between the airway pressure 

and pleural pressure and is considered as the lung-

distending pressure. This pressure measurement is 

closely correlated with lung strain and risk of VILI.(13) 

Measurement of oesophageal pressure (Poes) as a 

surrogate for pleural pressure helps to determine the 

lung mechanics and separate the effect of the chest 

wall.(10) In addition, the assessment of lung 

recruitability may be of great help to individualise the 

settings for mechanical ventilation and choose the level 

of positive end-expiratory pressure (PEEP) needed to 

keep the lung sufficiently open to minimise the risks of 

repeated opening and closing of alveoli. Despite 

controversies regarding the interpretation -of absolute 

values of esophageal pressure, a recent paper reviewed 

the usefulness of this tool in ventilation management.(14) 

When a given amount of pressure is delivered, it is of 

great importance in some situations to better know 

which percentage is distending the lung (potentially 

harmful to the lungs) and which amount is distending 

the chest wall. In ARDS, at the end of expiration, 

transpulmonary pressure can be negative (when pleural 

pressure exceeds end-expiratory airway pressure) which 

induces collapse of the alveoli and expose these parts of 

the lungs to being repeatedly reopened and recollapsed 

at each breath. A balance between protecting aerated 
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units from over-distension and recruiting unstable units 

must be obtained for the prevention of VILI. 

The titration of PEEP based on esophageal pressure 

measurement(15-17) has been proposed in patients with 

ARDS. Talmor et al(12) showed that oxygenation and 

lung compliance were significantly improved in 

patients managed by a ventilator strategy including 

esophageal pressure measurement. This recent interest 

in transplumonary pressure has contributed to the 

development of such monitoring in several advanced 

ventilators. Unfortunately, such ventilators are not 

available in all units in India. We believe that the use of 

transpulmonary pressure has to be developed and more 

research in this field is needed to validate the best 

strategy to quantify esophageal pressure in children and 

to confirm its utility in ventilation titration.  

Volumetric capnography (Vcap) is also a novel 

tool which allows the measurement of physiological 

and alveolar dead space at the bedside.(21-23) In this 

technique, expired CO2 is plotted against the tidal 

volume for each breath. Vcap analysis gives index of 

ventilation/perfusion (V/Q) mismatch, containing shunt 

and indices of lung efficiency (physiological and 

alveolar dead space). Vcap can help to set PEEP to 

obtain the lowest physiological and alveolar dead space, 

the lowest arterial to end-tidal CO2 gradient (PaCO2–

ETCO2 gradient), and the optimal alveolar plateau 

slope (SIII) that reflect V/Q heterogeneity.(24-27) We 

believe that Vcap will help clinicians to set PEEP 

routinely in the near future.  

There are increasing evidence on the role of 

diaphragmatic functions which suggests that MV is 

associated with diaphragmatic dysfunction and atrophy, 

also known as ventilator-induced diaphragmatic 

dysfunction.(29-31) To limit such consequences on the 

diaphragm, specific efforts should be addressed to 

reduce the duration of MV and to optimize ventilator 

settings. Improving individualized MV at bedside to 

limit diaphragmatic weakness is a great challenge but is 

essential to successfully wean patients from MV and 

decrease poor outcomes.(30,32,33) Monitoring of the 

electrical activity of the diaphragm (EAdi) provides 

new information to clinicians in order to assess 

diaphragm function and the impact of ventilation on the 

diaphragm muscle that can lead to rapidly progressive 

diaphragmatic weakness.(30.32) EAdi has been shown to 

reflect the patient ventilatory drive, and it is well 

correlated with work of breathing based on short-term 

physiological studies.(34,35) EAdi permits the detection 

of periods of blunted drive secondary to over 

assistance,(36) which likely favour the risk of diaphragm 

dysfunction. It therefore may be used as a tool to adjust 

ventilatory support,(37) to detect tonic activity of the 

diaphragm (which reflects the effort of the patient to 

increase the lung volume),(38) and to assess patient–

ventilator asynchrony.(39) When combined with pressure 

or volume delivered, EAdi measurements permit the 

assessment of diaphragm neuroventilatory (VT/EAdi) 

or neuromechanical (ΔP/EAdi) efficiency.(40) In the 

only pediatric study on this topic to date, Wolf et al(41) 

observed that the ability to generate a higher 

diaphragmatic activity for the same tidal volume in 

pressure support ventilation (PSV) was a predictor of 

successful extubation. 

This technology requires a specific nasogastric 

catheter equipped with distal electrodes connected to a 

dedicated ventilator. The main clinical application of 

EAdi monitoring is the neurally adjusted ventilatory 

assist mode (NAVA), a mode of ventilation which uses 

the EAdi to trigger and cycle-off breathing efforts and 

determine the amount of ventilator assistance. NAVA 

has many advantages compared to conventional MV, 

including improved patient–ventilator synchrony(39,42-45) 

the potential for a reduction in barotrauma (secondary 

to a decline of inspiratory pressure and tidal 

volume)(23,39,42,44,46) a possible decrease in 

atelectrauma,(47) and finally, improved diaphragmatic 

efficiency.(40) Moreover, NAVA improves unloading of 

the respiratory muscles and prevents the risk of over-

assistance through down regulation of EAdi induced by 

increased assistance.(37) A recent randomized trial(48) 

was conducted in children to test the clinical impact of 

NAVA and found that the feasibility of NAVA in 

clinical practice was confirmed, and it was associated 

with lower FiO2 requirements and lower inspiratory 

pressures. A trend for shorter duration of ventilation 

was observed, but it did not reach statistical 

significance. Now a days NAVA mode is used in 

difficult-to-wean children, in children who have 

undergone cardiac surgery, or any case in which the 

promotion of assisted ventilation and avoidance of 

diaphragm rest is important. EAdi is also routinely used 

to detect diaphragm contractility recovery in children 

with neuromuscular disease (e.g. botulism, Guillain-

Barré syndrome, and cervical trauma). 

 

Advances in weaning from mechanical 

ventilation 
Because of MV’s potential complications, such as 

VILI(49) and severe diaphragmatic atrophy(30,32) so it 

must be discontinued as soon as the patient is capable 

of sustaining spontaneous breathing. 

On the other hand, premature extubation may also 

be problematic, as higher mortality rates have been 

reported in patients with extubation failure.(2,50) 

Consequently, when and how to perform MV weaning 

are key questions in critically ill patients. The 

identification of extubation readiness is usually based 

on clinical judgement, according to the respiratory, 

neurological, and hemodynamic status. 

Clinical and research efforts have focused on early 

identification of weaning readiness. The development 

of the closed-loop system (CLS) (computerized 

protocol implementing recommendations regarding 

extubation without caregiver intervention) optimizes 

ventilatory support on a continuous basis according to 
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the patient’s respiratory condition. CLS offers 

consistent orders that constrain interpretation variations 

among caregivers, potentially resulting in a more 

efficient application of protocols. The use of CLS leads 

to a quicker adjustment of ventilator settings assessed 

by a reduction of time between the assessment of 

patient status and medical order, and medical order and 

clinical execution.(53) 

Two CLSs are commercialized for respiratory 

weaning: Smart- Care/PS® (Dräger Medical, Lubeck, 

Germany) and IntelliVent® (Hamilton Medical, 

Bonaduz, Switzerland). These systems automatically 

reduce the level of support when the patient’s 

respiratory rate, tidal volume, and end tidal CO2 

(EtPCO2) are within acceptable ranges. In adults, these 

systems reduced the weaning time without increasing 

adverse events.(54) Currently, only two trials, one for 

each of these two technologies, have been conducted in 

children, and their findings regarding safety and 

duration of weaning process are encouraging.(28,53) A 

significant limitation of these systems remains the 

minimal weight/age required (15 kg for Smartcare/PS 

® and 7 kg with Intellivent®) and they cannot be used 

in case of significant leaks around the endotracheal 

tube. These automated systems will improve the 

management of MV and therefore the outcome of 

patients, allowing the customization of ventilator 

support according to each child’s condition. However, 

companies and researchers should now focus their 

efforts on algorithms adapted to our pediatric 

population. 

During the weaning process, identifying whether or 

not patients will be able to breathe spontaneously after 

extubation is a significant challenge. The recent 

consensus conference on pediatric ARDS (PALICC) 

has addressed this question and recommended that 

spontaneous breathing trials (SBTs) or extubation 

readiness tests should be performed.(55) Determining 

inclusion criteria for SBT initiation has been a difficult 

challenge because of the broad patient population, 

different modes of ventilation, and lack of consensus 

for acceptable SBT parameters. 

Another limitation is appropriate timing for starting 

SBT. For these reasons, some patients who qualify for 

SBTs may not be recognized, which may result in a 

prolonged ventilation course. Some institutions are now 

using electronic data pooled from ventilators and 

electronic medical records to develop explicit software 

rules and algorithms (decision support) to help identify 

patients who may be ready for SBT. Assuming a patient 

has met certain parameters for SBT criteria (EtCO2, 

SpO2, tidal volume, respiratory rate, inspiratory 

pressure, etc.), the electronic medical record can 

provide visual cues to help remind clinicians that their 

patient is ready for SBT. In adults undergoing SBT, the 

use of an inspiratory pressure of 5 to 8cm H2O is 

recommended.(56) In children, very few data exist 

regarding the optimal method to conduct a SBT. 

Interestingly, a physiologic study conducted by 

Khemani et al, comparing a SBT with a continuous 

positive airway pressure (CPAP) of 5 cm H2O versus 

pressure support of 10cm H2O, concluded that pressure 

support significantly underestimates the potential for 

post extubation breathing efforts.(57) According to this 

recent study, we recommend performing a SBT in 

CPAP mode or with a T-tube. However, it should be 

noted that respiratory efforts observed during CPAP 

trial will be reflective of the efforts observed after 

extubation but will be larger than during SBT with 

PSV. Therefore, it is not surprising to observe increased 

efforts during CPAP, which should not lead to delay in 

extubation unless they appear to be objectively poorly 

tolerated. 

During weaning, esophageal pressure measurement 

can be a useful tool to assess the work of breathing. A 

robust parameter which can be derived from esophageal 

pressure and transdiaphragmatic pressure, i.e. the 

difference between esophageal pressure and gastric 

pressure, is the pressure-time-product. This parameter 

was used as a tool to assess work of breathing and 

optimize ventilation support in children with different 

diseases.(18,20) Jubran et al showed that esophageal 

pressure trend during a SBT provided an accurate 

prediction of weaning outcome.(58) Over the course of a 

SBT, esophageal pressure-time-product remained 

unchanged in successfully weaned patients. In contrast, 

weaning failure patients developed marked and 

progressive increase in esophageal pressure-time-

product (up to 4-fold above the normal value) as a 

result of an increase in the mechanical load of the 

respiratory muscles.(58) 

 

Advances in high-frequency oscillatory 

ventilation (HFOV) 
HFOV has been commonly used for decades in 

neonatal, pediatric, and adult populations.(58) Clinical 

trials have demonstrated that HFOV is associated with 

an oxygenation improvement in patients with acute 

lung injury or ARDS.(59-61) However, the clinical use of 

HFOV in this population has decreased. Recent studies 

demonstrated an association between early use of 

HFOV and worse outcome in terms of mortality in 

adult(62) and pediatric populations.(63,64) However, 

several biases have been highlighted in the two 

pediatric studies regarding the methodology.(65–67) As 

suggested by Rettig et al, the mortality in patients with 

ARDS supported by HFOV may be linked to the 

disease category itself rather than the use of HFOV.(68) 

Given these limitations and with regard to our clinical 

experience, we consider, as supported by the PALICC, 

HFOV to still be a rescue therapy in some children with 

severe ARDS. 

 

Advances in non-invasive ventilation (NIV) 
NIV is defined as the delivery of MV without an 

endotracheal tube or tracheostomy. NIV comprises both 
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CPAP and bilevel positive airway pressure (BiPAP) 

ventilation. NIV is increasingly used in PICUs.(69,70) In 

the last decade, the potential indications for NIV in 

critically ill patients have grown considerably, and the 

performance of this mode of support has greatly 

improved. In children developing ARDS, NIV can be 

considered as a first line of treatment in milder 

disease.(55) Despite the lack of clear guidelines, this 

mode of support definitely has its place in the treatment 

of a wide range of pathologies in children, including 

pneumonia, upper airway obstruction, post-extubation 

respiratory failure, acute chest syndrome, and 

asthma.(70) 

The use of NIV has recently evolved because of the 

emergence of high-flow nasal cannula (HFNC). This 

modality is now available from a number of 

manufacturers and has been widely adopted in practice. 

Different mechanisms have been hypothesized to 

account for the clinical benefits, including washout of 

the nasopharyngeal dead space, reduction of work of 

breathing, decrease in airway resistance, and 

improvement of pulmonary compliance.(71,72) 

HFNC has been able to provide a mean pharyngeal 

pressure of 4 cm H2 O when used at a flow of 2 

L/kg/minute,(73) but this effect is variable. In clinical 

use, HFNC allows improvement of comfort and 

tolerance to NIV and reduction of air leak, gastric 

distension, and skin injuries, especially in younger 

children. The literature is still poor to identify the 

specific population that would benefit from this 

technology.(18,74) The role of HFNC outside the PICU 

still needs to be investigated, and we currently restrict 

HFNC use in the PICU. 

More evidence is expected from several ongoing 

randomized controlled trials (TRAMONTANE study, 

NCT02457013; Hi-Flo study, NCT01498094; HHFNC 

study, NCT01662544). We believe that, within a few 

years, the role of HFNC will be better defined and 

potentially widened. 

The optimal interface for NIV in children has 

recently been discussed as a key aspect in respiratory 

management.(75) A large variety of devices recently 

emerged, including nasal, oronasal, and total face 

masks and helmet. Because mask-fit pressure is spread 

over a larger surface beyond the nose area, total face 

masks appear to be more comfortable than oronasal 

masks.(76) This device was shown to be as efficient as 

oronasal mask in terms of breathing pattern, gas 

exchange, and outcome in adults.(77) The helmet is also 

increasingly used(70) and should be considered as a 

feasible alternative for NIV in children, as suggested by 

the results of a recent randomized controlled trial 

comparing the use of a helmet and a face mask in 

children.(78) As for total face masks, preliminary data 

are pointing towards the helmet as an interface to 

increase comfort and decrease skin injury and air 

leaks.(79) Finally, to improve NIV success, the 

achievement of an adequate patient–ventilator 

synchrony is crucial.(19) Although the performance of 

ventilators has improved within the last few years, 

patient– ventilator asynchrony in NIV remains a 

significant issue. As with invasive ventilation, tools to 

improve patient–ventilator synchrony during NIV have 

been recently investigated. Electronic data monitoring 

and non-invasive neutrally adjusted ventilator assist 

(NAVA) are feasible and well tolerated in PICU 

patients with patient–ventilator synchrony 

improvement.(80,81) Monitoring esogastric pressure 

offers another way to improve patient–ventilator 

interaction during NIV. In infants(82) and children,(19) 

esophageal pressure measurement has been shown to be 

a valuable tool to assess patient–ventilator interaction 

and to optimize ventilator settings. 

 

Conclusion 
There have been major advances in the 

management of mechanically ventilating children over 

the last 3 years. The implementation of this new 

knowledge in usual practice is a challenge, as advances 

occur not only in the respiratory field but also in many 

fields that paediatric intensivists must digest. In such a 

situation, companies that design medical devices 

including ventilators and respiratory monitoring 

platforms play a key role in the application of 

knowledge. The creation of a ventilation consortium 

that includes companies, caregivers, researchers, and 

stakeholders could be a solution to promote knowledge 

implementation. 
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